

SEPDISP71

Modification instructions

Ver. 3.0

www.minitools.com

WARNING: This process is recommended only to expert and qualified staff.

THE FOLLOWING MODIFICATION IS NECESSARY FOR THE CORRECT FUNCTIONING OF SEPDISP71 DISPLAY. SEPDISP71 CAN REPLACE BOTH SCREENS OF THE INSTRUMENT CLUSTER (see picture 1).

- Replace the display in an ambient temperature of 25 °C.
- After replacing the LCD, switch on the cluster (pin no. 1 negative, pin no. 5 and pin no. 6 positive).

To adjust SEPDISP71 screen / screens voltage:

Picture 1

For the **left-hand side** display, measure the voltage between the points indicated in **picture 2**; for the **right-hand side** display measure between those indicated in **picture 3**.

If the voltage measured is between 7.25V and 7.35V, no modification is necessary;

• If the voltage detected is instead lower than 7.25V or higher than 7.35V, it is necessary to do the modification described in the following paragraph "EEPROM MODIFICATION"

SEPDISP71

EEPROM MODIFICATION

NOTE: For this modification on the instrument clusters, it is necessary to use an EEPROM programmer. We recommend our **SEP-EECLIP**.

• First, set the programmer reading in hexadecimal (HEX).

• **Desolder** and **make a backup of the 93C86 EEPROM** (*shown in picture 3*), which is located inside the metal enclosure on the back of the cluster.

- To reach a voltage close to 7.30V:
 - act on O3AE location for the left-hand side display
 - act on 03C6 location for the right-hand side display

Please note that **increasing or decreasing** these locations **by 1 HEX unit, the variation will be +/- 0.07V.**

If not familiar with hexadecimal calculation, it is possibile to use the calculation tool in the box below, simply typing in the values.

Picture 4

CALCULATION OF THE NEW VALUES OF THE LOCATIONS

* How to identify 03AE location and 03C6 location values on the EEPROM programmer

Offset(h)	00	01	02	03	04	05	06	07	08	09	AO	0B	0C	OD	0E	01
00000390	==	01	104	0.0	0.0	12	77	0.9	18	0.0	25	0.0	27	0.0	40	01
000003A0	91	0.0	44	01	D4	02	75	02	23	0.9	18	20	27	27	27	21
000003B0	24	1.7	25	0.0	28	0.0	10	0.0	91	0.0	16.6	91	D4	02	81	102
000003C0	23	0.9	30	28	28	28	28	28	27	20	12	02	12	02	0.8	104
000003D0	0.4	0.5	0.0	0.0	18	6.9	76	14	81	20	71	**	00	62	0.0	104

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF
00000390	11	01	18	0.0	00	12	77	0.9	18	00	25	00	27	0.0	40	0.0
000003A0	91	0.0	++	01	24	02	82	102	23	0.9	18	20	27	27	27	27
000003B0	24	17	25	0.0	28	0.0	40	0.0	91	0.0	**	61	04	02	82	02
000003C0	23	0.9	30	28	28	28	2.9	28	27	20	12	02	02	02	0.8	08
000003D0	04	0.9	00	0.0	1A	6.9	76	14	81	20	71	44	00	62	00	0.0

Once these modifications have been done, **measure again the voltage between the points indicated in picture 2 and 3** and **check** the it actually is **between 7.25V and 7.35V**, if not, increase or decrease the locations until the value is as close as possible to 7.30V.